

CBF-SDP Emulator

This is an interface emulator for the Correlator Beamformer and SDP recieve workflow interface. It is an extensible and configurable package that
has been designed to support multiple communication protocols and technolgies and provide a platform for testing consumers of CBF data payloads.

	Installation
	Dependencies

	This package

	Receiver
	Configuration options

	Running

	Running Multiple Receivers

	Payload Consumers
	mswriter

	plasma_writer

	Adding Custom Consumers

	Sender
	Configuration options

	API documentation
	Packetisers

	Transmitters

	Payloads

	Receivers

	Others

	Running the Receive Workflow
	Tests and Quick Start

	Deploying the Receive Workflow in the SDP Prototype

	Deploying the Receive Workflow Behind a Proxy (PSI deployments)

	Running the Emulator

Installation

Dependencies

Optionally, first create a virtual environment.

This package uses the OSKAR MS libraries
for doing Measurement Set reading and writing.
The OSKAR project contains numerous other functionality though
which can be more expensive to build and install.
To install only this part of the C++ library
follow these instructions:

Install dependencies and build tool
apt-get -y update
apt-get -y install cmake libblas-dev liblapack-dev casacore-dev

Get a copy of OSKAR
git clone https://github.com/OxfordSKA/OSKAR.git
mkdir OSKAR/oskar/ms/release
cd OSKAR/oskar/ms/release

Add -DCMAKE_INSTALL_PREFIX=$VIRTUAL_ENV if installing into a virtual
environment
cmake -DCASACORE_LIB_DIR=/usr/lib/x86_64-linux-gnu ..

Build and install
make -j4
make install

Got back to the root directory where you started
cd ../../../..

Our package does not use the C++ OSKAR MS library directly
but its python bindings.
However, the OSKAR python bindings package
does not support out of the box
to install only the MS part of the bindings.
Thus, the following steps will be required:

Get a copy of this package
git clone https://gitlab.com/ska-telescope/cbf-sdp-emulator

Use this package's copy of setup.py to build OSKAR's python bindings
cd OSKAR/python
mv ../../cbf-sdp-emulator/3rdParty/setup_oskar_ms.py ./setup.py
python3 ./setup.py build
python3 ./setup.py install
cd ../../

This package

This is a standard setuptools-based program
so the usual installation methods should work.
The only caveat is that some of the dependencies
are found in the EngageSKA’s Nexus server instead of PyPI,
so we need to point pip to them:

Go into the top-level directory of this repository
cd cbf-sdp-emulator

Using "pip" will automatically install any dependencies from PyPI
pip install --extra-index-url=https://nexus.engageska-portugal.pt/repository/pypi/simple .

Use pip in editable mode if you are actively changing the code
pip install --extra-index-url=https://nexus.engageska-portugal.pt/repository/pypi/simple -e .

This package contains code to interact with a Plasma store.
This is declared as an extra plasma dependency,
so if you are planning to use this support
you will need to install the extra dependency:

pip install --extra-index-url=https://nexus.engageska-portugal.pt/repository/pypi/simple .[plasma]

Receiver

An emu-recv program should be available after installing the package.
This program receives packets. It is an extensible package that is built
to be agnostic to the actual mode of reception.

Configuration options

Configuration options can be given through a configuration file or through the
command-line. See emu-recv -h for details. An example configuration file is
given in ‘example.conf’.

The following configuration categories/names are supported for the SPEAD2
receivers - other receivers can be added that are not SPEAD2 compliant.
But currently as of this initial version we are only supplying the SPEAD2 UDP
receiver. The API for adding more receivers in this framework is supplied:

	reception: these are configuration options applied
when reading the input Measurement Set.

	bind_hostname: The IP address or hostname of the interface to which to bind for reception.

	receiver_port_start: The initial port number to which to bind.

	num_ports: [optional] The number of ports to which to bind. This can also be calculated from the ‘channels_per_stream’ option and the number of channels in the data-model.

	consumer: The consumer class to attach to the receiver, defaults to mswriter.
If this a simple name, then it is assumed to be
a module under the cbf_sdp.consumers package
which inside must contain a consumer class.
User-provided code can also be specified
by giving the full path to a class
(e.g., my.python.package.module.classname).
For more details on consumers
see Payload Consumers.

	datamodel: This is important. We have no interface with the telescope model (TM) and therefore have to obtain all the observation metadata from somewhere. We have decided to use the Measurement Set as the basis for this. So you should supply a measurement set that contains the same metadata as that which is being sent. it does not have to be the same file - but the output measurement set parameters and the UVW will be taken from this file. We open and close this file quickly so there should be no issue with multiple open files. Providing the receiver is started before the sender.

	transmission: these are options that generally apply
to the transmission method and are mostly ignored by the receiver except:

	channels_per_stream: The number of channels for which data will be sent in a single stream. This is used in the case where multiple ports are required with multiple channels per port. You dont actually need this - but without it you have to set num_ports appropriately

Running

The application is really simple to run. It is installed as an entrypoint when you
install the package and will run as simply as:
emu_recv -c <configuration_file>
Or you can specify the various options on the command line. A typical configuratio
file is supplied and looks like this:

[transmission]

method = spead2_transmitters
target_host = 127.0.0.1
target_port_start = 41000
channels_per_stream = 1
rate = 247000

[reader]

[payload]

method = icd

[reception]

method = spead2_receivers
receiver_port_start = 41000
consumer = spead2_mswriter
datamodel = tests/data/gleam-model.ms
outputfilename = tests/data/recv-vis.ms

Note by default we use a spead2 transmitter and receiver and a icd payload.
We have designed this package to be extensible and if you want to add
different transmitters and receivers you should be able to

In practical terms it makes sense to start the receiver(s) before the transmitter
so they are waiting for data. But you do not have to - the protocols and consumers are
flexible enough to be started when the data-stream is already running.

Running Multiple Receivers

In many places we have made design decisions that are common to the SKA-SA systems. In the
case of multiple consumers we are simply using UDP multicast. THis means that multiple consumers
can access the same transmitted stream if they bind to the same multicast IP address and ports.
We have examples of this operations in the example configurations.

This multiple-receiver operation is required when displays and monitoring is required to sample the
data in transit - before it becomes a measurement set.

Payload Consumers

Upon the reception and decoding of a payload,
a receiver passes it to a consumer.
Consumers are a simple mechanism
for decoupling data reception
from any further data processing.

The cbf-sdp-emulator package
currently comes with 2 built-in consumers,
but arbitrary consumers can be used as well.
The mechanism used to choose a consumer
can be found here
(see the reception.consumer option).

mswriter

The mswriter consumer, as derived from its name,
writes incoming payloads into a Measurement Set.
If payloads are missing
the resulting Measurement Set will still have the missing rows,
but with invalid data.

plasma_writer

The plasma_writer consumer puts the incoming payloads
into a shared plasma store
using the sdp-dal-prototype [https://gitlab.com/ska-telescope/sdp-dal-prototype].
The sdp-dal-prototype implements an RPC-like API;
from its standpoint our plasma_writer is a Caller,
and the payload is written into plasma
representing a remote method invocation.
In order to demonstrate the full cycle
of writing and reading data into/from plasma
we also provide a corresponding Processor
under cbf_sdp.plasma_processor.SimpleProcessor,
which corresponds to the callee.
Upon invocation,
this processor takes incoming payloads
and writes them into a Measurement Set,
similarly to how mswrite does.

Adding Custom Consumers

Third-party consumers are also supported,
which users can provide within their own code bases.
Consumers are implemented as classes with the following signatures:

	An __init__(config, tm) method for initialization.
The config parameter contains the full receiver configuration dictionary,
as loaded from its command-line and configuration file.
The tm is an instance of cbf_sdp.utils.FakeTM
containing most metadata about the observation.

	An async def consume(self, payload) method for payload consumption.
The payload parameter is an instance of cbf_sdp.icd.Payload.
Note that this is a coroutine,
so potentially long-running tasks should be spawned off
using executors to avoid hanging the event loop.

Sender

An emu-send program should be available after installing the package.
This program takes a Measurement Set and transmits it over the network
using the preferred transmission method.

Configuration options

Configuration options can be given through a configuration file or through the
command-line. See emu-send -h for details.

The following configuration categories/names are supported:

	reader: these are configuration options applied
when reading the input Measurement Set.

	start_chan: the first channel for which data is read.
Channels before this one are skipped.
If start_chan is bigger
than the actual number of channels in the input MS
an error is raised.

	num_chan: number of channels for which data is read.
If num_chan + start_chan are bigger
than the actual number of channels in the input MS
then num_chan is adjusted.

	num_repeats: number of times a single set of visibilities
should be sent after being read, defaults to 1.
Bigger values will send the same data over and over,
which is less realistic but imposes less stress on the file-system.

	transmission: these are options that apply
to the transmission method.

	method: the transmission method to use, defaults to spead2.

	target_host: the host where data will be sent to.

	target_port_start: the first port where data will be sent to.

	channels_per_stream: number of channels for which data will be sent
in a single stream.

	max_packet_size: the maximum size of packets to build, used by
spead2.

	rate: the maximum send data rate, in bytes/s.
Used by spead2, defaults to 1 GB/s.

API documentation

This section describes requirements and guidelines.

Packetisers

We begin with the packetiser we have written as a default emulator
this is a pretty simple package that uses the transmitter and payload classes
defined in the configuration to send data.

At the moment we have an assumption that the ICD payload is being used.
but minor changes to the packetise method would remove that requirement.
Very minimal work is needed to replicate this with another payload.

The actual transmission protocol is abstracted into the transmitters
and this is currently defaulting to SPEAD2 and UDP. But as this is almost
completely abstracted should be easy to change.

Default Emulator

Reads data from a MS and creates SPEAD2 packets.

This package is designed to be easily extensible to different payloads and protocols. This module is
currently installed as emu_send when the package is installed.

	
cbf_sdp.packetiser.packetise(config, ms, loop=None)[source]

	Reads data off a Measurement Set and transmits it using the transmitter
specified in the configuration.

Uses the vis_reader get data from the measurement set then gives it to the
transmitter for packaging and transmission. This code is transmission
protocol agnostic.

	Parameters

	
	config – The configuration

	ms – The measurement set

Transmitters

The transmitters are envisaged to be at least as diverse as UDP, IBV
and perhaps ROCE we have only implemented the UDP transmitter. But extensions
should be trivial

spead2_transmitters

Class that manages transmission of a SPEAD2 HEAP via UDP and of a content
defined by the payload class

	
class cbf_sdp.transmitters.spead2_transmitters.Spead2SenderPayload(num_baselines=None, num_channels=None)[source]

	SPEAD2 payload following the CSP-SDP interface document

	
class cbf_sdp.transmitters.spead2_transmitters.transmitter(config, num_baselines, num_chan, loop)[source]

	SPEAD2 transmitter

This class uses the spead2 library to transmit visibilities over multiple
spead2 streams. Each visiblity set given to this class’ send method is
broken down by channel range (depending on the configuration parameters),
and each channel range is sent through a different stream.

	
close()[source]

	Sends the end-of-stream message

	
send(ts, ts_fraction, vis)[source]

	Send a visibility set through all SPEAD2 streams

	Parameters

	
	ts – the integer part of the visibilities’ timestamp

	ts_fraction – the fractional part of the visibilities’ timestamp

	vis – the visibilities

Payloads

	
class cbf_sdp.icd.Payload[source]

	A payload as specified by the ICD

	
channel_count

	The number of channels contained in this payload

	
channel_id

	The ID of the first channel of this payload

	
correlated_data_fraction

	The fraction of data on this payload that was correlated

	
hardware_id

	The ID of the hardware source of this payload

	
mjd_time

	The timestamp of the payload in MJD seconds

	
phase_bin_count

	The number of phase bins of this payload

	
phase_bin_id

	The ID of the first phase bin of this payload

	
polarisation_id

	The ID of the polarisation of this payload

	
scan_id

	The ID of the scan of this payload

	
time_centroid_indices

	The time centroids for each visibility of this payload

	
timestamp_count

	The timestamp of the visibilities, as (integer) seconds since UNIX epoch

	
timestamp_fraction

	The fractional timestamp of the visibilities, as an integer with units
of 1/2**32 seconds

	
unix_time

	The timestamp as fractional seconds since UNIX epoch

	
visibilities

	The correlator visibilities of this payload

Receivers

UDP Protocol Multi-stream SPEAD2 receiver

	
class cbf_sdp.receivers.spead2_receivers.Spead2ReceiverPayload[source]

	A Payload that updates itself from data coming from spead2 heaps

	
class cbf_sdp.receivers.spead2_receivers.receiver(config, tm, loop)[source]

	SPEAD2 receiver

This class uses the spead2 library to receive a multiple number of streams,
each using a single UDP reader. As heaps are received they are given to a
single consumer.

	
run()[source]

	Receive all heaps, passing them to the consumer

Others

	
class cbf_sdp.utils.FakeTM(ms)[source]

	TelescopeManager-like class that reads its model information from a
Measurement Set.

	
freq_inc_hz

	The frequency increment between channels, in Hz

	
freq_start_hz

	The frequency of the first channel, in Hz

	
get_freq_inc_hz()[source]

	The frequency increment between channels, in Hz

	
get_freq_start_hz()[source]

	The frequency of the first channel, in Hz

	
get_is_autocorrelated()[source]

	Whether the current observation is used autocorrelation or not

	
get_matching_data(current_mjd_utc) → cbf_sdp.utils.DataObject[source]

	Like get_nearest_data, but if no exact match is found an ValueError
exception is raised.

	
get_nearest_data(time) → cbf_sdp.utils.DataObject[source]

	Returns the (meta)data associated with correlator dumps happening at a
given point in time. If no exact match is found the nearest is returned.

	
get_num_baselines()[source]

	The number of baselines used by the current observation

	
get_num_channels()[source]

	The number of channels of the current observation

	
get_num_pols()[source]

	The number of polarisations used by the current observation

	
get_num_stations()[source]

	The number of stations used by the current observation

	
get_phase_centre_radec_rad()[source]

	Return the RA/DEC phase centre in radians

	
is_autocorrelated

	Whether the current observation is used autocorrelation or not

	
num_baselines

	The number of baselines used by the current observation

	
num_channels

	The number of channels of the current observation

	
num_pols

	The number of polarisations used by the current observation

	
num_stations

	The number of stations used by the current observation

	
phase_centre_radec_rad

	Return the RA/DEC phase centre in radians

Running the Receive Workflow

There are many ways to deploy this workflow, standalone on a local machine for testing. Distributed across a
local cluster, or installed as a Kubernetes chart. This interface simlualtor sits across 2 domains in the SKA. The
emulator (sender) is a synthesiser of the Correlator Beamformer (CBF) which is a device within the
Central Signal Processor (CSP) domain. The receiver is an example of a Science Data Processor workflow and as such
resides in the SDP regime.

We have developed a number of mechanisms by which these two elements can be deployed. But they essentailly fall into
tow simple groups. A kubernetes deployment - be it in a general Kubernetes environment or more specifically the SKAMPI
prototype of the SKA. This section of the documentation deals with a few example deployments.

Tests and Quick Start

Ok so you don’t want to read all the documentation, or just want
to get something running straight away. Open in the quickstart directory
and you will find some simple configuration files.

There are quickstart examples for the following situations:

1) A simple send and receive pair for a small number of channels on a single stream.
The basic and simplest scheme - this will not expected to scale beyond a few hundred channels.

2) A simple send and receive pair for a larger number of channels using multiple streams
but a single output file. This employs a multi-threaded asynchronous receive and should scale.
Although the performance may be limited by disk performance - both sending and receiving.

Each experiment is in its own directory - example data sets are included in the tests/data
directory. You should not need to install anything other than this package to get them to
work.

Running the examples

The example directories include a working configuration and run script (‘run.sh’). Just executing the
run script will run a receiver in the background and a sender in the foreground. It will transfer the visibility
data weights and flags and transfer the meta-data from the mock-TM interface.

Deploying the Receive Workflow in the SDP Prototype

Setting up the Prototype

In these instructions we are assuming you have a deployed Kubernetes environment. Either minikube or the integration
environment and the etcd and sdp-prototype charts are installed:

> helm list
NAME NAMESPACE REVISION UPDATED STATUS CHART APP VERSION
etcd default 1 2020-10-27 10:20:42.192392 +1100 AEDT deployed etcd-operator-0.11.0 0.9.4
sdp-prototype default 1 2020-10-27 10:20:58.656668 +1100 AEDT deployed sdp-prototype-0.4.0 1.0

Then ensure that all your pods are running:

> kubectl get pods
NAME READY STATUS RESTARTS AGE
databaseds-tango-base-sdp-prototype-0 1/1 Running 1 162m
etcd-etcd-operator-etcd-operator-796f6fd5bb-52qsf 1/1 Running 0 163m
itango-tango-base-sdp-prototype 1/1 Running 2 162m
sdp-prototype-console-86dc9bb7d6-4fxfc 1/1 Running 0 162m
sdp-prototype-etcd-vnkfzzwzgk 1/1 Running 0 162m
sdp-prototype-helmdeploy-5cbdbd9d48-68rs2 1/1 Running 0 162m
sdp-prototype-lmc-cb799bbdf-5p5dg 3/3 Running 0 162m
sdp-prototype-proccontrol-854779ff7d-m5s6w 1/1 Running 0 162m
tangodb-tango-base-sdp-prototype-0 1/1 Running 0 162m

The pods may take a while to start running.

Configuring the Workflow

Although this repository contains example helm-charts - the helm-charts specific to deployment of the sdp-prototype are
stored in another repository (https://gitlab.com/ska-telescope/sdp-helmdeploy-charts.git). For the purposes of continuity
we will document the use of the sdp-prototype chart here. The documentation may be replicated in other repositories.

The configuration of the receive workflow is managed via adding to the configuration of the processing block.
The processing block can be created using the sdpcfg utility or via the iTango interface. In this example we will assume
sdpcfg is being used:

> sdpcfg process realtime:test_new_receive:0.1.4

This will start up a default deployment. Without arguments this is a test deployment. If will launch a number of containers and
both a sender and receiver in the same pod. We typically use this for testing purposes. The behaviour and the chart deployed
can be altered by adding a JSON blob to the command line, for example:

>sdpcfg process realtime:test_new_receive:0.1.4 "{ transmit.model : false, reception.ring_heaps : 133 }"

In the above example you can see there are two key value pairs in the JSON blob. The first transmit.model : false tells
the receive workflow not to start a sender/emulator container. In the future we may make this the default state. The second
reception.ring_heaps : 133 is an example of a configuration setting for the receive workflow. All the options supported
by the receiver are supported by the chart deployment. The defaults set by the workflow currently are:

'model.pull' : 'true',
'model.url' : 'https://gitlab.com/ska-telescope/cbf-sdp-emulator/-/raw/master/data/sim-vis.ms.tar.gz',
'model.name' : 'sim-vis.ms',
'transmit.model' : 'true',
'reception.outputfilename' : 'output.ms',
'transmission.channels_per_stream' : 4,
'transmission.rate' : '147500',
'payload.method' : 'icd',
'reader.num_timestamps' : 0,
'reader.start_chan' : 0,
'reader.num_chan' : 0,
'reader.num_repeats' : 1,
'results.push' : 'false'

For more information on the configuration of the receivers see Receiver. The will also be some default configurations
for the chosen consumer in Payload Consumers.

The important consideration for the current version of the emulator and receive workflow is that the interface Telescope Model is
via the measurement set. As the charts need to be agnostic about where and how they are deployed it was neccesary to provide a
scheme whereby the data-model could be accessed by the deployment. What we do here is we provide a mechanism by which the model
can be pulled by providing a URL to a compressed tarfile of the model measurement set, and the name of that measurement set
once unzipped. This should be the same as the measurement set that will be transmitted by the emulator to allow the UVW and
timestamps to match.

Once sdpcfg has be run with the desired configuration the receive will be running as a server inside a POD and waiting for
packets from the emulator (or even the actual CBF)

Retrieving Data from Kubernetes Deployments

If the receive workflow is configured to generate a measurement set. Then it needs to be exported from the Kubernetes environment.
The mechanism we have provided for this is mediated by the rclone package https://rclone.org. In order for this to
work in a secure manner we have provided a mechanism by which a container can pull an rclone configuration file - containing the
credentials and configured end points. This configuration is then used by a container to push the results out. There are only two configuration
options required:

	rclone.configurl. This is a URL of an rclone.conf. Please see the rclone documentation for instructions regarding the generation of this.

	rclone.command. This is the destination you want for the measurement set in the format expected by rclone - namely theremote type, as defined in your configuration file, followed by the path for that remote.

For example this is a workflow configuration utilising this capability:

>sdpcfg process realtime:test_new_receive:0.1.4 "{ transmit.model : false, results.push : true , rclone.configurl = 'https://www.dropbox.com/s/yqmzfs8ovtnonbe/rclone.conf?dl=1' , rclone.command = gcs:/yan-486-bucket/demo.ms }"

After the receive workflow completes the data will be synchronised with the end-point.

Deploying the Receive Workflow Behind a Proxy (PSI deployments)

One of the more complex issues to deal with when deploying to a Kubernetes environment is networking. THis is made more
difficult if the kbernetes environment itself is behind a firewall. The SDP prototype deployment can be thought of as charts
thant instantiate containers that themselves instantiate containers. Proxies are usually exposed through environment
variables which requires the environment to be propagated from chart to chart.

The PSI in an integration environment which is managed by CSIRO and behind a web-proxy. When the sdp-prototype is deployed
all the elements of the prototype need to be informed of the proxy

Configuring Workflow to Use The Proxy

Firstly the sdp prototype needs to be deployed with a proxy setting exposed. This is an install line which will expose
the CSIRO proxy to the helm charts of the sdp prototype:

helm install sdp-prototype sdp-prototype --set proxy.server=delphinus.atnf.csiro.au:8888 --set proxy.noproxy='{}'

This will ensure the prototype itself is launched with the correct proxy settings.

But as you would expect this does not neccesarily pass the proxy settings on to workflows. Ih the case of the receive
workflow.

This is the equivalent sdpcfg line with the proxy information:

> sdpcfg process realtime:test_new_receive:0.1.4 "{proxy.server : delphinus.atnf.csiro.au:8888 ,
transmit.model : false , results.push : true ,
rclone.configurl : 'https://www.dropbox.com/s/yqmzfs8ovtnonbe/rclone.conf?dl=1' ,
rclone.command : gcs:/yan-483-bucket/psi-demo002.ms , reception.ring_heaps : 133 ,
proxy.use : true }"

This command line would launch the receive workflow on the PSI, behind a proxy, configured to push the results to a
Google Cloud Services bucket.

Running the Emulator

Now we can configure the receive workflow in a number of different environments - we should consider how to deploy
the emulator.

The emulator can be ran simply as a standalone application and configured on the command line. This is how the
straightforward deployments work. However we have also built a tango device to control the application and it is
documented here: CBF-SDP Emulator TANGO Devices [https://developer.skatelescope.org/projects/cbf-sdp-emulator-tango-device/en/latest/index.html]

These is a chart included in the tango-device repository https://gitlab.com/ska-telescope/cbf-sdp-emulator-tango-device.git
and that is deployed in a similar way to the kubernetes deployment of the receive workflow:

> cd charts
> helm install emulator cbf-sdp-emulator-tango-device --set proxy.use=true --set proxy.server=delphinus.atnf.csiro.au:8888

Then the device can be configured and controlled via an LMC container as described in CBF-SDP Emulator TANGO Devices [https://developer.skatelescope.org/projects/cbf-sdp-emulator-tango-device/en/latest/index.html].

 Python Module Index

 . |
 c

 		 	

 		
 .	

 	
 	
 ../cbf_sdp/transmitters/spead2_transmitters.py	

 		 	

 		
 c	

 	[image: -]
 	
 cbf_sdp	

 	
 	
 cbf_sdp.packetiser	

 	
 	
 cbf_sdp.receivers.spead2_receivers	

 	
 	
 cbf_sdp.transmitters.spead2_transmitters	

Index

 Symbols
 | C
 | F
 | G
 | H
 | I
 | M
 | N
 | P
 | R
 | S
 | T
 | U
 | V

Symbols

 	
 	../cbf_sdp/transmitters/spead2_transmitters.py (module)

C

 	
 	cbf_sdp.packetiser (module)

 	cbf_sdp.receivers.spead2_receivers (module)

 	cbf_sdp.transmitters.spead2_transmitters (module)

 	
 	channel_count (cbf_sdp.icd.Payload attribute)

 	channel_id (cbf_sdp.icd.Payload attribute)

 	close() (cbf_sdp.transmitters.spead2_transmitters.transmitter method)

 	correlated_data_fraction (cbf_sdp.icd.Payload attribute)

F

 	
 	FakeTM (class in cbf_sdp.utils)

 	
 	freq_inc_hz (cbf_sdp.utils.FakeTM attribute)

 	freq_start_hz (cbf_sdp.utils.FakeTM attribute)

G

 	
 	get_freq_inc_hz() (cbf_sdp.utils.FakeTM method)

 	get_freq_start_hz() (cbf_sdp.utils.FakeTM method)

 	get_is_autocorrelated() (cbf_sdp.utils.FakeTM method)

 	get_matching_data() (cbf_sdp.utils.FakeTM method)

 	get_nearest_data() (cbf_sdp.utils.FakeTM method)

 	
 	get_num_baselines() (cbf_sdp.utils.FakeTM method)

 	get_num_channels() (cbf_sdp.utils.FakeTM method)

 	get_num_pols() (cbf_sdp.utils.FakeTM method)

 	get_num_stations() (cbf_sdp.utils.FakeTM method)

 	get_phase_centre_radec_rad() (cbf_sdp.utils.FakeTM method)

H

 	
 	hardware_id (cbf_sdp.icd.Payload attribute)

I

 	
 	is_autocorrelated (cbf_sdp.utils.FakeTM attribute)

M

 	
 	mjd_time (cbf_sdp.icd.Payload attribute)

N

 	
 	num_baselines (cbf_sdp.utils.FakeTM attribute)

 	num_channels (cbf_sdp.utils.FakeTM attribute)

 	
 	num_pols (cbf_sdp.utils.FakeTM attribute)

 	num_stations (cbf_sdp.utils.FakeTM attribute)

P

 	
 	packetise() (in module cbf_sdp.packetiser)

 	Payload (class in cbf_sdp.icd)

 	phase_bin_count (cbf_sdp.icd.Payload attribute)

 	
 	phase_bin_id (cbf_sdp.icd.Payload attribute)

 	phase_centre_radec_rad (cbf_sdp.utils.FakeTM attribute)

 	polarisation_id (cbf_sdp.icd.Payload attribute)

R

 	
 	receiver (class in cbf_sdp.receivers.spead2_receivers)

 	
 	run() (cbf_sdp.receivers.spead2_receivers.receiver method)

S

 	
 	scan_id (cbf_sdp.icd.Payload attribute)

 	send() (cbf_sdp.transmitters.spead2_transmitters.transmitter method)

 	
 	Spead2ReceiverPayload (class in cbf_sdp.receivers.spead2_receivers)

 	Spead2SenderPayload (class in cbf_sdp.transmitters.spead2_transmitters)

T

 	
 	time_centroid_indices (cbf_sdp.icd.Payload attribute)

 	timestamp_count (cbf_sdp.icd.Payload attribute)

 	
 	timestamp_fraction (cbf_sdp.icd.Payload attribute)

 	transmitter (class in cbf_sdp.transmitters.spead2_transmitters)

U

 	
 	unix_time (cbf_sdp.icd.Payload attribute)

V

 	
 	visibilities (cbf_sdp.icd.Payload attribute)

Deploying the Receive Workflow in the SDP Prototype

Setting up the Prototype

In these instructions we are assuming you have a deployed Kubernetes environment. Either minikube or the integration
environment and the etcd and sdp-prototype charts are installed:

> helm list
NAME NAMESPACE REVISION UPDATED STATUS CHART APP VERSION
etcd default 1 2020-10-27 10:20:42.192392 +1100 AEDT deployed etcd-operator-0.11.0 0.9.4
sdp-prototype default 1 2020-10-27 10:20:58.656668 +1100 AEDT deployed sdp-prototype-0.4.0 1.0

Then ensure that all your pods are running:

> kubectl get pods
NAME READY STATUS RESTARTS AGE
databaseds-tango-base-sdp-prototype-0 1/1 Running 1 162m
etcd-etcd-operator-etcd-operator-796f6fd5bb-52qsf 1/1 Running 0 163m
itango-tango-base-sdp-prototype 1/1 Running 2 162m
sdp-prototype-console-86dc9bb7d6-4fxfc 1/1 Running 0 162m
sdp-prototype-etcd-vnkfzzwzgk 1/1 Running 0 162m
sdp-prototype-helmdeploy-5cbdbd9d48-68rs2 1/1 Running 0 162m
sdp-prototype-lmc-cb799bbdf-5p5dg 3/3 Running 0 162m
sdp-prototype-proccontrol-854779ff7d-m5s6w 1/1 Running 0 162m
tangodb-tango-base-sdp-prototype-0 1/1 Running 0 162m

The pods may take a while to start running.

Configuring the Workflow

Although this repository contains example helm-charts - the helm-charts specific to deployment of the sdp-prototype are
stored in another repository (https://gitlab.com/ska-telescope/sdp-helmdeploy-charts.git). For the purposes of continuity
we will document the use of the sdp-prototype chart here. The documentation may be replicated in other repositories.

The configuration of the receive workflow is managed via adding to the configuration of the processing block.
The processing block can be created using the sdpcfg utility or via the iTango interface. In this example we will assume
sdpcfg is being used:

> sdpcfg process realtime:test_new_receive:0.1.4

This will start up a default deployment. Without arguments this is a test deployment. If will launch a number of containers and
both a sender and receiver in the same pod. We typically use this for testing purposes. The behaviour and the chart deployed
can be altered by adding a JSON blob to the command line, for example:

>sdpcfg process realtime:test_new_receive:0.1.4 "{ transmit.model : false, reception.ring_heaps : 133 }"

In the above example you can see there are two key value pairs in the JSON blob. The first transmit.model : false tells
the receive workflow not to start a sender/emulator container. In the future we may make this the default state. The second
reception.ring_heaps : 133 is an example of a configuration setting for the receive workflow. All the options supported
by the receiver are supported by the chart deployment. The defaults set by the workflow currently are:

'model.pull' : 'true',
'model.url' : 'https://gitlab.com/ska-telescope/cbf-sdp-emulator/-/raw/master/data/sim-vis.ms.tar.gz',
'model.name' : 'sim-vis.ms',
'transmit.model' : 'true',
'reception.outputfilename' : 'output.ms',
'transmission.channels_per_stream' : 4,
'transmission.rate' : '147500',
'payload.method' : 'icd',
'reader.num_timestamps' : 0,
'reader.start_chan' : 0,
'reader.num_chan' : 0,
'reader.num_repeats' : 1,
'results.push' : 'false'

For more information on the configuration of the receivers see Receiver. The will also be some default configurations
for the chosen consumer in Payload Consumers.

The important consideration for the current version of the emulator and receive workflow is that the interface Telescope Model is
via the measurement set. As the charts need to be agnostic about where and how they are deployed it was neccesary to provide a
scheme whereby the data-model could be accessed by the deployment. What we do here is we provide a mechanism by which the model
can be pulled by providing a URL to a compressed tarfile of the model measurement set, and the name of that measurement set
once unzipped. This should be the same as the measurement set that will be transmitted by the emulator to allow the UVW and
timestamps to match.

Once sdpcfg has be run with the desired configuration the receive will be running as a server inside a POD and waiting for
packets from the emulator (or even the actual CBF)

Retrieving Data from Kubernetes Deployments

If the receive workflow is configured to generate a measurement set. Then it needs to be exported from the Kubernetes environment.
The mechanism we have provided for this is mediated by the rclone package https://rclone.org. In order for this to
work in a secure manner we have provided a mechanism by which a container can pull an rclone configuration file - containing the
credentials and configured end points. This configuration is then used by a container to push the results out. There are only two configuration
options required:

	rclone.configurl. This is a URL of an rclone.conf. Please see the rclone documentation for instructions regarding the generation of this.

	rclone.command. This is the destination you want for the measurement set in the format expected by rclone - namely theremote type, as defined in your configuration file, followed by the path for that remote.

For example this is a workflow configuration utilising this capability:

>sdpcfg process realtime:test_new_receive:0.1.4 "{ transmit.model : false, results.push : true , rclone.configurl = 'https://www.dropbox.com/s/yqmzfs8ovtnonbe/rclone.conf?dl=1' , rclone.command = gcs:/yan-486-bucket/demo.ms }"

After the receive workflow completes the data will be synchronised with the end-point.

Deploying the Receive Workflow Behind a Proxy (PSI deployments)

One of the more complex issues to deal with when deploying to a Kubernetes environment is networking. THis is made more
difficult if the kbernetes environment itself is behind a firewall. The SDP prototype deployment can be thought of as charts
thant instantiate containers that themselves instantiate containers. Proxies are usually exposed through environment
variables which requires the environment to be propagated from chart to chart.

The PSI in an integration environment which is managed by CSIRO and behind a web-proxy. When the sdp-prototype is deployed
all the elements of the prototype need to be informed of the proxy

Configuring Workflow to Use The Proxy

Firstly the sdp prototype needs to be deployed with a proxy setting exposed. This is an install line which will expose
the CSIRO proxy to the helm charts of the sdp prototype:

helm install sdp-prototype sdp-prototype --set proxy.server=delphinus.atnf.csiro.au:8888 --set proxy.noproxy='{}'

This will ensure the prototype itself is launched with the correct proxy settings.

But as you would expect this does not neccesarily pass the proxy settings on to workflows. Ih the case of the receive
workflow.

This is the equivalent sdpcfg line with the proxy information:

> sdpcfg process realtime:test_new_receive:0.1.4 "{proxy.server : delphinus.atnf.csiro.au:8888 ,
transmit.model : false , results.push : true ,
rclone.configurl : 'https://www.dropbox.com/s/yqmzfs8ovtnonbe/rclone.conf?dl=1' ,
rclone.command : gcs:/yan-483-bucket/psi-demo002.ms , reception.ring_heaps : 133 ,
proxy.use : true }"

This command line would launch the receive workflow on the PSI, behind a proxy, configured to push the results to a
Google Cloud Services bucket.

 All modules for which code is available

	cbf_sdp.icd

	cbf_sdp.packetiser

	cbf_sdp.receivers.spead2_receivers

	cbf_sdp.transmitters.spead2_transmitters

	cbf_sdp.utils

 Source code for cbf_sdp.icd

-*- coding: utf-8 -*-
import logging

from astropy.time import Time, TimeDelta
import numpy as np

logger = logging.getLogger(__name__)

def mjd_to_icd(mjd):
 """
 Convert MJD seconds into ICD timestamp information
 """
 times = Time(mjd / 86400, format='mjd').unix
 time_fractions, times = np.modf(times)
 times = times.astype('<u4')
 time_fractions = (time_fractions * 2 ** 32).astype('<u4')
 return times, time_fractions

def icd_to_mjd(times, time_fractions):
 """
 Convert ICD timestamp into MJD seconds.

 ICD payloads store time in two integer fields: full seconds since the
 UNIX epoch, and a fractional second count in 1/2**32 units.
 """
 ti = Time(times, format='unix')
 tf = TimeDelta(time_fractions / 2 ** 32, format='sec')
 mjd = (ti + tf).to_value('mjd')
 return mjd * 86400.0 # there might be a precision problem

[docs]class Payload(object):
 """A payload as specified by the ICD"""

 def __init__(self):
 self._baseline_count = 0
 self._channel_count = 0
 self._channel_id = 0
 self._correlated_data_fraction = []
 self._hardware_id = 0
 self._phase_bin_id = 0
 self._phase_bin_count = 0
 self._polarisation_id = 0
 self._scan_id = 0
 self._time_centroid_indices = []
 self._timestamp_count = 0
 self._timestamp_fraction = 0
 self._visibilities = []

 @property
 def baseline_count(self):
 return self._baseline_count

 @baseline_count.setter
 def baseline_count(self, baseline_count):
 self._baseline_count = baseline_count

 @property
 def channel_count(self):
 """The number of channels contained in this payload"""
 return self._channel_count

 @channel_count.setter
 def channel_count(self, channel_count):
 self._channel_count = channel_count

 @property
 def channel_id(self):
 """The ID of the first channel of this payload"""
 return self._channel_id

 @channel_id.setter
 def channel_id(self, channel_id):
 self._channel_id = channel_id

 @property
 def correlated_data_fraction(self):
 """The fraction of data on this payload that was correlated"""
 return self._correlated_data_fraction

 @correlated_data_fraction.setter
 def correlated_data_fraction(self, correlated_data_fraction):
 self._correlated_data_fraction = correlated_data_fraction

 @property
 def hardware_id(self):
 """The ID of the hardware source of this payload"""
 return self._hardware_id

 @hardware_id.setter
 def hardware_id(self, hardware_id):
 self._hardware_id = hardware_id

 @property
 def phase_bin_id(self):
 """The ID of the first phase bin of this payload"""
 return self._phase_bin_id

 @phase_bin_id.setter
 def phase_bin_id(self, phase_bin_id):
 self._phase_bin_id = phase_bin_id

 @property
 def phase_bin_count(self):
 """The number of phase bins of this payload"""
 return self._phase_bin_count

 @phase_bin_count.setter
 def phase_bin_count(self, phase_bin_count):
 self._phase_bin_count = phase_bin_count

 @property
 def polarisation_id(self):
 """The ID of the polarisation of this payload"""
 return self._polarisation_id

 @polarisation_id.setter
 def polarisation_id(self, polarisation_id):
 self._polarisation_id = polarisation_id

 @property
 def scan_id(self):
 """The ID of the scan of this payload"""
 return self._scan_id

 @scan_id.setter
 def scan_id(self, scan_id):
 self._scan_id = scan_id

 @property
 def time_centroid_indices(self):
 """The time centroids for each visibility of this payload"""
 return self._time_centroid_indices

 @time_centroid_indices.setter
 def time_centroid_indices(self, time_centroids):
 self._time_centroid_indices = time_centroids

 @property
 def timestamp_count(self):
 """The timestamp of the visibilities, as (integer) seconds since UNIX epoch"""
 return self._timestamp_count

 @timestamp_count.setter
 def timestamp_count(self, timestamp_count):
 self._timestamp_count = timestamp_count

 @property
 def timestamp_fraction(self):
 """The fractional timestamp of the visibilities, as an integer with units
 of 1/2**32 seconds"""
 return self._timestamp_fraction

 @timestamp_fraction.setter
 def timestamp_fraction(self, timestamp_fraction):
 self._timestamp_fraction = timestamp_fraction

 @property
 def visibilities(self):
 """The correlator visibilities of this payload"""
 return self._visibilities

 @visibilities.setter
 def visibilities(self, visibilities):
 self._visibilities = visibilities

 @property
 def mjd_time(self) -> float:
 """The timestamp of the payload in MJD seconds"""
 return icd_to_mjd(self.timestamp_count, self.timestamp_fraction)

 @property
 def unix_time(self) -> float:
 """The timestamp as fractional seconds since UNIX epoch"""
 return self.timestamp_count + self.timestamp_fraction / 2 ** 32

 Source code for cbf_sdp.packetiser

-*- coding: utf-8 -*-
"""Default Emulator

 Reads data from a MS and creates SPEAD2 packets.

 This package is designed to be easily extensible to different payloads and protocols. This module is
 currently installed as emu_send when the package is installed.

"""

import argparse
import asyncio
import configparser
import logging
import time

from oskar import measurement_set
import ska.logging

from cbf_sdp import transmitters, msutils
from cbf_sdp.utils import baselines

logger = logging.getLogger(__name__)
DEFAULT_CONFIG_FILE = 'packetiser.conf'

[docs]async def packetise(config, ms, loop=None):
 """
 Reads data off a Measurement Set and transmits it using the transmitter
 specified in the configuration.

 Uses the vis_reader get data from the measurement set then gives it to the
 transmitter for packaging and transmission. This code is transmission
 protocol agnostic.

 :param config: The configuration
 :param ms: The measurement set
 """
 loop = loop or asyncio.get_event_loop()

 ms = measurement_set.MeasurementSet.open(ms, readonly=True)
 num_stations = ms.num_stations
 num_baselines = msutils.get_baselines_from_ms(ms)

 if num_baselines == baselines(num_stations, False):
 logger.warning('Baseline count indicates AUTO are not present')
 elif num_baselines == baselines(num_stations, True):
 logger.info('AUTOs present')

 chan_per_stream = int(config['transmission'].get('channels_per_stream', 0))
 start_chan = config['reader'].get('start_chan', 0)
 num_chan = config['reader'].get('num_chan', 0)
 num_chan = msutils.clamp_num_chan(ms, start_chan, num_chan)
 config['transmission']['total_channels'] = str(num_chan)

 logger.info(f'no. stations : {num_stations}')
 logger.info(f'no. baselines : {num_baselines}')
 logger.info(f'no. channels : {num_chan}')
 logger.info(f'first channel : {start_chan}')
 logger.info(f'channels per stream : {chan_per_stream} (0 == all)')

 # Repeats
 num_repeats = int(config['reader'].get('num_repeats', 1))
 if num_repeats <= 0:
 raise ValueError(f'num_repeats must be > 0: {num_repeats}')

 # Iterate over timesteps in the data
 transmitter = transmitters.create(config['transmission'], num_baselines, num_chan, loop)
 start_time = time.time()
 async with transmitter:
 num_timestamps = int(config['reader'].get('num_timestamps', 0))
 vis_reader = msutils.vis_reader(ms, start_chan=start_chan, num_chan=num_chan,
 num_timestamps=num_timestamps)
 async for vis_amps, ts, ts_fraction in vis_reader:
 repeat_count = 0
 while repeat_count < num_repeats:
 repeat_count += 1
 await transmitter.send(ts, ts_fraction, vis_amps)

 # Print time taken.
 duration = time.time() - start_time
 data_size = transmitter.bytes_sent / 1024 / 1024
 logger.info(
 "Sent %.3f MB in %.3f sec (%.3f MB/sec)",
 data_size, duration, (data_size / duration),
)

def _config_parser(f):
 config_parser = configparser.ConfigParser()
 config_parser.read(f)
 if 'transmission' not in config_parser:
 config_parser['transmission'] = {}
 if 'reader' not in config_parser:
 config_parser['reader'] = {}
 if 'payload' not in config_parser:
 config_parser['payload'] = {}
 return config_parser

def _augment_config(config, options):
 for opt in options:
 name, value = opt.split('=')
 category, name = name.split('.')
 if category not in config:
 config[category] = {}
 config[category][name] = value

def main():

 parser = argparse.ArgumentParser(
 description="Creates SPEAD2 heaps out of a MS file"
)
 parser.add_argument(
 "-c",
 '--config',
 help="The configuration file to load, defaults to %s" % DEFAULT_CONFIG_FILE,
 default=DEFAULT_CONFIG_FILE,
 type=_config_parser,
)
 parser.add_argument(
 "-o",
 "--option",
 help="Additional configuration options in the form of category.name=value",
 action='append'
)
 parser.add_argument(
 "-v",
 "--verbose",
 help="If set, more verbose output will be produced",
 action="store_true"
)
 parser.add_argument('measurement_set', help="The measurement set to read data from")

 args = parser.parse_args()
 logging_level = logging.DEBUG if args.verbose else logging.INFO
 ska.logging.configure_logging(level=logging_level)
 config = args.config
 if (args.option):
 _augment_config(config, args.option)

 loop = asyncio.get_event_loop()
 loop.run_until_complete(
 packetise(config, args.measurement_set, loop))

if __name__ == '__main__':
 main()

 Source code for cbf_sdp.utils

-*- coding: utf-8 -*-
"""some utils to get information """

import asyncio
import bisect
import logging

import numpy as np
from oskar import measurement_set

logger = logging.getLogger(__name__)

def baselines(stations, autocorr = True):
 if (autocorr):
 return (stations * (stations + 1)) // 2
 else:
 return (stations * (stations - 1)) // 2

class DataObject(object):

 def __init__(self, time, uu, vv, ww, myinterval=1.0,myexposure=1.0):
 """Just holds the row elements we care about"""

 self.time = time
 self.uu = uu
 self.vv = vv
 self.ww = ww
 self.interval = myinterval
 self.exposure = myexposure

[docs]class FakeTM(object):
 """
 TelescopeManager-like class that reads its model information from a
 Measurement Set.
 """

 def __init__(self, ms):

 logger.info(f'Attempting to build model from {ms}')

 # Convert OSKAR's RuntimeError into an IOError
 try:
 myMS = measurement_set.MeasurementSet.open(ms, readonly=True)
 except RuntimeError:
 raise IOError()

 self.objects = [] # structure that holds the contents of the row we care about
 self.times = [] # structure that also holds the time. This will be easy to search that the structure of objects

 row_num = 0
 try:
 mytime = myMS.read_column('TIME', row_num, 1)
 except:
 logger.error(f'Failed to get TIME from {ms}')

 nexttime = mytime

 while (nexttime == mytime):
 row_num = row_num + 1
 try:
 nexttime = myMS.read_column('TIME', row_num, 1)
 except:
 logger.error(f'Failed to get TIME from {ms}')

 self._num_baselines = row_num
 self._is_autocorrelated = self._num_baselines != baselines(myMS.num_stations)
 self._freq_inc_hz = myMS.get_freq_inc_hz()
 self._freq_start_hz = myMS.freq_start_hz
 self._num_channels = myMS.num_channels
 self._num_pols = myMS.num_pols
 self._num_stations = myMS.num_stations
 self._phase_centre_ra_rad = myMS.phase_centre_ra_rad
 self._phase_centre_dec_rad = myMS.phase_centre_dec_rad

 row_num = 0 # reset
 uu = np.zeros(self.num_baselines, np.float32)
 vv = np.zeros_like(uu)
 ww = np.zeros_like(uu)

 while row_num < myMS.num_rows :
 mytime = myMS.read_column('TIME',row_num,1)
 myinterval = myMS.read_column('INTERVAL',row_num,1)
 myexposure = myMS.read_column('EXPOSURE',row_num,1)
 (uu,vv,ww) = myMS.read_coords(row_num,self.num_baselines)
 row = DataObject(mytime[0], uu, vv, ww, myinterval, myexposure)

 self.objects.append(row)
 self.times.append(mytime[0])

 row_num = row_num + self.num_baselines

[docs] def get_num_channels(self):
 """The number of channels of the current observation"""
 return self._num_channels

[docs] def get_freq_start_hz(self):
 """The frequency of the first channel, in Hz"""
 return self._freq_start_hz

[docs] def get_freq_inc_hz(self):
 """The frequency increment between channels, in Hz"""
 return self._freq_inc_hz

[docs] def get_num_stations(self):
 """The number of stations used by the current observation"""
 return self._num_stations

[docs] def get_num_baselines(self):
 """The number of baselines used by the current observation"""
 return self._num_baselines

[docs] def get_is_autocorrelated(self):
 """Whether the current observation is used autocorrelation or not"""
 return self._is_autocorrelated

[docs] def get_num_pols(self):
 """The number of polarisations used by the current observation"""
 return self._num_pols

[docs] def get_phase_centre_radec_rad(self):
 """Return the RA/DEC phase centre in radians"""
 return self._phase_centre_ra_rad, self._phase_centre_dec_rad

 num_channels = property(get_num_channels)
 freq_start_hz = property(get_freq_start_hz)
 freq_inc_hz = property(get_freq_inc_hz)
 num_stations = property(get_num_stations)
 num_baselines = property(get_num_baselines)
 is_autocorrelated = property(get_is_autocorrelated)
 num_pols = property(get_num_pols)
 phase_centre_radec_rad = property(get_phase_centre_radec_rad)

[docs] def get_nearest_data(self, time) -> DataObject :
 """
 Returns the (meta)data associated with correlator dumps happening at a
 given point in time. If no exact match is found the nearest is returned.
 """
 assert len(self.times) == len(self.objects)
 time_idx = bisect.bisect_left(self.times, time)
 if time_idx == len(self.times):
 raise ValueError
 return time_idx, self.objects[time_idx]

[docs] def get_matching_data(self, current_mjd_utc) -> DataObject :
 """
 Like get_nearest_data, but if no exact match is found an `ValueError`
 exception is raised.
 """
 time_idx, data = self.get_nearest_data(current_mjd_utc)
 if self.times[time_idx] != current_mjd_utc:
 raise ValueError
 return time_idx, data

 Source code for cbf_sdp.receivers.spead2_receivers

-*- coding: utf-8 -*-
"""
UDP Protocol Multi-stream SPEAD2 receiver
"""
import asyncio
import logging

import spead2.recv.asyncio

from cbf_sdp import consumers, icd

IS_SPEAD3 = int(spead2.__version__.split('.')[0]) == 3

logger = logging.getLogger(__name__)

def create_stream(io_thread_pool, ring_heaps, max_heaps, loop):
 if IS_SPEAD3:
 kwargs = {
 'config': spead2.recv.StreamConfig(max_heaps=max_heaps),
 'ring_config': spead2.recv.RingStreamConfig(heaps=ring_heaps)
 }
 else:
 kwargs = {
 'ring_heaps': ring_heaps,
 'max_heaps': max_heaps,
 'loop': loop
 }
 return spead2.recv.asyncio.Stream(io_thread_pool, **kwargs)

[docs]class Spead2ReceiverPayload(icd.Payload):
 """A Payload that updates itself from data coming from spead2 heaps"""

 def __init__(self):
 super()
 self._item_group = spead2.ItemGroup()

 def update(self, heap):
 ig = self._item_group
 ig.update(heap)
 # We could perform here all kinds of checks to verify that the heap
 # conforms to the ICD standard, but we choose not to for the time being
 self.baseline_count = ig['visibility_baseline_count'].value
 self.channel_count = ig['visibility_channel_count'].value
 self.channel_id = ig['visibility_channel_id'].value
 self.hardware_id = ig['visibility_hardware_id'].value
 self.phase_bin_id = ig['visibility_phase_bin_id'].value
 self.phase_bin_count = ig['visibility_phase_bin_count'].value
 self.polarisation_id = ig['visibility_polarisation_id'].value
 self.scan_id = ig['scan_id'].value
 self.timestamp_count = ig['visibility_timestamp_count'].value
 self.timestamp_fraction = ig['visibility_timestamp_fraction'].value
 corr_out_data = ig['correlator_output_data'].value
 self.time_centroid_indices = corr_out_data['TCI']
 self.correlated_data_fraction = corr_out_data['FD']
 self.visibilities = corr_out_data['VIS']

TODO: Replace all the following code with the desired functionality for the package
[docs]class receiver:
 """
 SPEAD2 receiver

 This class uses the spead2 library to receive a multiple number of streams,
 each using a single UDP reader. As heaps are received they are given to a
 single consumer.
 """

 def __init__(self, config, tm, loop):

 assert 'reception' in config, "Configuration does not contain reception details"
 assert 'transmission' in config,"Configuration does not contain transmission details"

 self.loop = loop
 self.consumer = consumers.create(config, tm)

 channels_per_stream = int(config['transmission'].get('channels_per_stream', 0))
 if channels_per_stream == 0:
 channels_per_stream = tm.num_channels
 num_streams = tm.num_channels // channels_per_stream

 logger.info('Creating stream with %d UDP readers to receive data for %d channels',
 num_streams, channels_per_stream)
 self.streams = self._setup_streams(num_streams, config, loop)

 def _setup_streams(self, num_streams, config, loop):
 recv_port = int(config['reception'].get('receiver_port_start', 41000))
 bind_hostname = config['reception'].get('bind_hostname', '')
 ring_heaps = int(config['reception'].get('ring_heaps', 16))
 receiver_threads = int(config['reception'].get('receiver_threads', 1))
 io_thread_pool = spead2.ThreadPool(threads=receiver_threads)
 streams = []
 for i in range(num_streams):
 stream = create_stream(io_thread_pool, ring_heaps, 32, loop)
 port = recv_port + i
 stream.add_udp_reader(port, bind_hostname=bind_hostname)
 logger.info('Started udp_reader on port %d', port)
 streams.append((stream, Spead2ReceiverPayload()))
 return streams

[docs] async def run(self):
 """Receive all heaps, passing them to the consumer"""
 self.num_heaps = 0
 tasks = [self._process_stream_heaps(s, payload) for s, payload in self.streams]
 await asyncio.gather(*tasks)
 logger.info(f'Received {self.num_heaps} heaps')

 async def _process_stream_heaps(self, stream, payload):
 async for heap in stream:
 if heap.is_start_of_stream():
 continue
 self.num_heaps += 1
 payload.update(heap)
 await self.consumer.consume(payload)

 Source code for cbf_sdp.transmitters.spead2_transmitters

-*- coding: utf-8 -*-
"""spead2_transmitters

 Class that manages transmission of a SPEAD2 HEAP via UDP and of a content
 defined by the payload class

"""
import asyncio
import logging
import math

import numpy as np
import spead2.send.asyncio

from cbf_sdp import icd

CORR_OUT_TYPE = [('TCI', 'i1'), ('FD', 'u1'), ('VIS', '<c8', 4)]
IS_SPEAD3 = int(spead2.__version__.split('.')[0]) == 3

logger = logging.getLogger(__name__)

def create_stream(thread_pool, target_host, port, config, loop):
 kwargs = {
 'thread_pool': thread_pool,
 'config': config,
 }
 if IS_SPEAD3:
 kwargs['endpoints'] = (target_host, port),
 else:
 kwargs['hostname'] = target_host
 kwargs['port'] = port
 kwargs['loop'] = loop
 return spead2.send.asyncio.UdpStream(**kwargs)

[docs]class Spead2SenderPayload(icd.Payload):
 """SPEAD2 payload following the CSP-SDP interface document"""

 def __init__(self, num_baselines=None, num_channels=None):
 super(Spead2SenderPayload, self).__init__()
 self._item_group = spead2.send.ItemGroup(flavour=spead2.Flavour(4, 64, 48, 0))
 self._add_items(num_baselines, num_channels)
 self.baseline_count = num_baselines
 self.channel_count = num_channels

 def _add_items(self, num_baselines, num_channels):
 """
 Adds all the items to the payload as defined by the ICD

 :param num_baselines: number of baselines int the HEAP - used for sizing
 :param num_channels: number of channels in the HEAP - used for sizing
 """
 ig = self._item_group
 ig.add_item(
 id=0x6000,
 name='visibility_timestamp_count',
 description='',
 shape=tuple(),
 format=None,
 dtype='<u4',
)
 ig.add_item(
 id=0x6001,
 name='visibility_timestamp_fraction',
 description='',
 shape=tuple(),
 format=None,
 dtype='<u4',
)
 ig.add_item(
 id=0x6002,
 name='visibility_channel_id',
 description='',
 shape=tuple(),
 format=None,
 dtype='<u4',
)
 ig.add_item(
 id=0x6003,
 name='visibility_channel_count',
 description='',
 shape=tuple(),
 format=None,
 dtype='<u4',
)
 ig.add_item(
 id=0x6004,
 name='visibility_polarisation_id',
 description='',
 shape=tuple(),
 format=None,
 dtype='<u4',
)
 ig.add_item(
 id=0x6005,
 name='visibility_baseline_count',
 description='',
 shape=tuple(),
 format=None,
 dtype='<u4',
)
 ig.add_item(
 id=0x6006,
 name='visibility_phase_bin_id',
 description='',
 shape=tuple(),
 format=None,
 dtype='<u2',
)
 ig.add_item(
 id=0x6007,
 name='visibility_phase_bin_count',
 description='',
 shape=tuple(),
 format=None,
 dtype='<u2',
)
 ig.add_item(
 id=0x6008,
 name='scan_id',
 description='',
 shape=tuple(),
 format=None,
 dtype='<u8',
)
 ig.add_item(
 id=0x6009,
 name='visibility_hardware_id',
 description='',
 shape=tuple(),
 format=None,
 dtype='<u4',
)
 ig.add_item(
 id=0x600A,
 name='correlator_output_data',
 description='',
 shape=(num_channels, num_baselines,),
 dtype=CORR_OUT_TYPE,
)
 vis = np.zeros(shape=(num_channels, num_baselines), dtype=CORR_OUT_TYPE)
 ig['correlator_output_data'].value = vis

 def get_heap(self):
 ig = self._item_group
 corr_out_data = ig['correlator_output_data'].value
 ig['visibility_baseline_count'].value = self.baseline_count
 ig['visibility_channel_count'].value = self.channel_count
 ig['visibility_channel_id'].value = self.channel_id
 ig['visibility_hardware_id'].value = self.hardware_id
 ig['visibility_phase_bin_id'].value = self.phase_bin_id
 ig['visibility_phase_bin_count'].value = self.phase_bin_count
 ig['visibility_polarisation_id'].value = self.polarisation_id
 ig['scan_id'].value = self.scan_id
 ig['visibility_timestamp_count'].value = self.timestamp_count
 ig['visibility_timestamp_fraction'].value = self.timestamp_fraction
 if len(self.time_centroid_indices):
 corr_out_data['TCI'] = self.time_centroid_indices
 if len(self.correlated_data_fraction):
 corr_out_data['FD'] = self.correlated_data_fraction
 if len(self.visibilities):
 corr_out_data['VIS'] = self.visibilities
 return ig.get_heap(descriptors='all', data='all')

 def get_start_heap(self):
 return self._item_group.get_start()

 def get_end_heap(self):
 return self._item_group.get_end()

[docs]class transmitter(object):
 """
 SPEAD2 transmitter

 This class uses the spead2 library to transmit visibilities over multiple
 spead2 streams. Each visiblity set given to this class' `send` method is
 broken down by channel range (depending on the configuration parameters),
 and each channel range is sent through a different stream.
 """

 def __init__(self, config, num_baselines, num_chan, loop):
 self.config = config
 max_packet_size = int(config.get('max_packet_size', 1472))
 logger.info(
 'Creating StreamConfig with max_packet_size=%d',
 max_packet_size)
 self.stream_config = spead2.send.StreamConfig(
 max_packet_size=max_packet_size,
 rate=int(config.get('rate', 1024 * 1024 * 1024)),
 burst_size=10,
 max_heaps=1,
)
 self.channels_per_stream = int(
 config.get('channels_per_stream', 0))
 self.sender_threads = int(
 config.get('sender_threads', 1))
 self.num_streams = 0 # set on first call to send()
 self.bytes_sent = 0
 self.streams = []
 self._loop = loop
 self._start_heap_sent = False
 self._create_streams(num_baselines, num_chan)

 def _create_streams(self, num_baselines, num_channels):
 if self.channels_per_stream == 0:
 self.num_streams = 1
 else:
 self.num_streams = math.ceil(num_channels / self.channels_per_stream)
 logger.info(
 'Creating %d spead2 streams to send data for %d channels',
 self.num_streams,
 num_channels)

 # Each stream uses a separate ItemGroup because Heaps created out of
 # ItemGroups can point to memory held by the ItemGroup; and since we
 # want different heaps sent through each fo the streams we then need
 # independent ItemGroups
 self.payloads = [Spead2SenderPayload(num_baselines, self.channels_per_stream)
 for _ in range(self.num_streams)]

 # Create the streams; they still share a single I/O threadpool
 thread_pool = spead2.ThreadPool(threads=self.sender_threads)
 config = self.config
 target_host = config.get('target_host', '127.0.0.1')
 target_port = int(config.get('target_port_start', 41000))
 for i in range(self.num_streams):
 port = target_port + i
 logger.info("Sending to %s:%d", target_host, port)
 stream = create_stream(
 thread_pool, target_host, port,
 self.stream_config, self._loop
)
 self.streams.append(stream)

 async def _send_heaps(self, heaps):
 assert(len(heaps) == len(self.streams))
 send_operations = []
 for heap, stream in zip(heaps, self.streams):
 send_operations.append(stream.async_send_heap(heap))
 results = await asyncio.gather(*send_operations)
 self.bytes_sent += sum(results)

[docs] async def send(self, ts, ts_fraction, vis):
 """
 Send a visibility set through all SPEAD2 streams

 :param ts: the integer part of the visibilities' timestamp
 :param ts_fraction: the fractional part of the visibilities' timestamp
 :param vis: the visibilities
 """
 if not self._start_heap_sent:
 await self._send_heaps([payload.get_start_heap() for payload in self.payloads])
 self._start_heap_sent = True

 logger.debug('Sending heaps to %d spead2 streams', len(self.streams))
 heaps = []
 assert(len(self.payloads) == len(self.streams))
 for i, payload in enumerate(self.payloads):
 first_chan, last_chan = self.channels_per_stream * i, self.channels_per_stream * (i + 1)
 payload.timestamp_count = ts
 payload.timestamp_fraction = ts_fraction
 payload.visibilities = vis[first_chan:last_chan]
 payload.channel_id = first_chan
 payload.channel_count = self.channels_per_stream
 heaps.append(payload.get_heap())
 await self._send_heaps(heaps)

[docs] async def close(self):
 """Sends the end-of-stream message"""
 await self._send_heaps([payload.get_end_heap() for payload in self.payloads])

 async def __aenter__(self):
 return self

 async def __aexit__(self, ext_type, exc, tb):
 await self.close()

 _static/up.png

_static/img/logo.jpg
SOUARE KILOMETRE ARRAY

_static/ajax-loader.gif

_static/comment-bright.png

_static/comment-close.png

nav.xhtml

 Table of Contents

 		
 CBF-SDP Emulator

 		
 Installation

 		
 Dependencies

 		
 This package

 		
 Receiver

 		
 Configuration options

 		
 Running

 		
 Running Multiple Receivers

 		
 Payload Consumers

 		
 mswriter

 		
 plasma_writer

 		
 Adding Custom Consumers

 		
 Sender

 		
 Configuration options

 		
 API documentation

 		
 Packetisers

 		
 Transmitters

 		
 Payloads

 		
 Receivers

 		
 Others

 		
 Running the Receive Workflow

 		
 Tests and Quick Start

 		
 Running the examples

 		
 Deploying the Receive Workflow in the SDP Prototype

 		
 Setting up the Prototype

 		
 Configuring the Workflow

 		
 Retrieving Data from Kubernetes Deployments

 		
 Deploying the Receive Workflow Behind a Proxy (PSI deployments)

 		
 Configuring Workflow to Use The Proxy

 		
 Running the Emulator

_static/down.png

_static/comment.png

_static/down-pressed.png

_static/plus.png

_static/file.png

_static/minus.png

_static/up-pressed.png

